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A mutant gene which appeared in a finite population will eventually either be 
lost from the population or fixed (established) in it. The mean time until 

either of these alternative events takes place was studied by WATTERSON (1962) 
and EWENS (1963). They made use of a method previously announced by DARL- 
ING and SIEGERT (1953), and, independently by FELLER (1954). Actually, DARL- 
ING and SIEGERT refer to its application to genetics. 

From the standpoint of population genetics, however, it is much more desirable 
to determine separately the mean time until fixation and that until loss. Since 
the gene substitution in a population plays a key role in the evolution of the 
species, it may be of particular interest to know the mean time for a rare mutant 
gene to become fixed in a finite population, excluding the cases in which such a 
gene is lost from the population. 

In the present paper, a solution to this problem will be presented together with 
Monte Carlo experiments to test some of the theoretical results. Throughout this 
paper, the senior author (M. K.) is responsible for the mathematical treatments, 
while the junior author (T. 0.) is responsible for the numerical treatments based 
on computers. 

BASIC THEORY 

Let us consider a diploid population consisting of N individuals and having the 
variance effective number Ne,  which may be different from the actual number 
(for the definition of Ne,  see KIMURA and CROW 1963). Throughout this paper, 
we will denote by p the frequency of a mutant gene (A2), so that 1-p represents 
the frequency of its allele (Al). Also, we will use the diffusion models (cf. 
KIMURA 1964) to solve the problem. Let u(p,t) be the probability that the mutant 
allele A, becomes fixed (i.e., its frequency becomes unity) by the tth generation, 
given that its frequency is p at the start (i.e., at t = 0). If we define a quantity 
T,  ( p )  by the relation 
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represents the average number of generations until the mutant allele with initial 
frequency p becomes fixed in the population, excluding the cases in which the 
allele is lost from it. In the above expression, u ( p )  stands for the probability of 
ultimate fixation (KIMURA 1957,1962), such that 

( 3 )  ~ ( p )  = lim U (p , t )  . 
t-3 a 

If we denote by M and V 
6 P 6 P  

the mean and the variance of the rate of change 

in the frequency of A, per generation, then as shown by KIMURA (1962), U (p,t> 
satisfies the following partial differential equation 

Here we assume that the process of change in gene frequency is time homogene- 
ous, that is, both M,,, and V 

Differentiating each term of the above equation (4) with respect to t, multiply- 
ing each of the resulting terms by t, followed by integrating them with respect to 
t from 0 to CO, we obtain 

do not depend on time parameter t. 
S P  

The left hand side of this equation is reduced to -u(p) ,  since 

= - U(P,CO), 
in which we assume that tau(p,t)/at vanishes at t = a. 

Thus, we have the following ordinary differential equation for Tl ( p ) ,  

T l” (P)  + d p )  T,’(p) + H p )  = 0, ( 5 )  

where a ( p )  = 2M,p/Va, and b ( p )  =2U(P)/V*, 

The above equation can be integrated immediately, and if we determine the two 
constants involved by the following two boundary conditions, 

( 6 )  lim T, ( p >  = finite 
P - 3  0 

and 

we obtain 
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In the above formula, 

is the probability of ultimate fixation, and $(x) is given by 

where 

in which exp { a }  stands for the exponential function. 
Of the two boundary conditions, the first, i.e. ( 6 ) ,  may need some comments. 

It reflects the fact that in a finite population a single mutant gene which appeared 
in the population reaches fixation within a finite time. It is also equivalent to the 
relation lim T ,  ( p )  = Kp, in which K is a constant. 

P-+ 0 

From (8) and (2), the required solution for our problem is 

where U and $ are given respectively by (9) and (IO). Similarly, we can derive 
the average number of generations until the mutant gene is lost from the popula- 
tion, excluding the cases in which the mutant gene is ultimately fixed in the 
population. This is given by 

SOME SPECIAL CASES 

In this section we assume that the factor causing random fluctuation in gene 
frequency is the random sampling of gametes alone so that 

where Ne is the variance effective number. 

v = P(l-P)/(ey 1, 
S P  

In the simplest case of neutral mutations, we have 
M = O .  

Thus from (12) , the average number of generations until fixation (excluding the 
cases of loss) is 

(14) 

ti (0) = 4Ne. (15) 

B P  

I 
P 

- 
ti (P) = - - (4Ne ( 1-p) loge ( 1-p) }. 

At the limit of p + 0, we have - 



766 MOT00 KIMURA AND TOMOKO OHTA 

This shows that an originally rare mutant gene in a population of effective size 
N ,  takes about 4Ne generations until it spreads to the whole population if we 
disregard the cases in which such a gene is eventually lost from the population. 
Similarly, from (13),  the number of generations until loss (excluding the cases 
of fixation) for neutral mutations is 

If the mutant gene A, has the selective advantage sJ2 over its allele A, (case of 
genic selection) such that 

then, writing Nes=S, we have, from (12) 

where 

-_ ) &, 
2 

s ( l-e-z") J ,  ___- 

u(x) = (I-e-'"")/(l-e-?s) 
and 

J ,  = d 5 .  

A more general case of genotypic selection can also be worked out in a similar 
way using equation (12). 

NUMERICAL EXAMPLES A N D  MONTE CARLO EXPERIMENTS 

The numerical evaluation of some of the results of the foregoing sections to- 
gether with Monte Carlo experiments were performed using computers TOSBAC 
3100 and IBM 360. The only case which can be evaluated easily from the formula 
is the one of selectively neutral mutations (formula 14) .  For other cases, one 
needs numerical integration. In this section, the numerical examples for the cases 
of no selection, genic selection (no dominance) and overdominance will be given. 

The Monte Carlo experiments were performed for the cases of no selection and 
genic selection by the following scheme. In each generation, the change of gene 
frequency by genic selection was carried out deterministically using the formula 

4 = +P(l-P)/(l+sPL (18) 

where s i s  the selection coefficient for the mutant homozygote. Sampling of zy- 
gotes was performed by generating pseudo-random numbers, X(O<X< 1), using 
the subroutines RAND in TOSBAC 3400 and RANDU in IBM 360. Each experi- 
ment was continued until fixation or extinction and the number of generations 
involved was recorded. 400 replicate trials were done for each set of parameters. 

Figure 1 shows the comparison of the results of Monte Carlo simulation (dots) 
and those of analytical solution (curves) for the cases of N,=lO (upper curve) 
and N,=5 (lower curve). The abscissa represents the initial frequency p. As p 
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FIGURE 1 .-Average number of generations until fixation of a selectively neutral mutant 

gene as a function of its initial frequency. The theoretical values are represented by curves and 
those of Monte Carlo simulation by dots. 2Ne=20 in the upper curve and 2N,=10 in the lower 
one. 

changes from 0 to 1, the number of generations until fixation changes from 40 to 
0 for the case of N,=10 and from 20 to 0 in the case of N,=5. As it is clear from 
the figure, the agreement between theMonte Carlo results and the theoretical pre- 
dictions is satisfactory, although the latter seems to overestimate the true value 
slightly. 

The results for the case of genic selection are given in Figure 2 with a constant 
initial frequency ( p =  0.1) and a varying selection intensity. The curve repre- 
sents the theoretical results by numerical integration, and the dols represent the 
results of Monte Carlo experiments. The numerical integration was performed by 
Simpson’s rule using the computer IBM 360. Again, the agreement between the 
two is satisfactory, though the theoretical treatment seems to underestimate the 
actual value slightly. The slight discrepancy may be due to the existence of the 
denominator in formula (18) that effectively decreases the value of s in the 
numerator as compared with the expression ( s /2 )  p (1 - p )  used in the theoretical 
treatment. As expected, the selective advantage accelerates the fixation of the 
advantageous allele. So, it may be of some interest to compare such acceleration 
with the rate of steady decay (KIMURA 1955). It can be shown that, as N,s 
increases, the inverse of the rate of steady decay decreases more rapidly as com- 
pared with the shortening of the fixation time (with p = 0.1). For example, when 
N,s = 5 ,  the time until fixation is about half of that of the neutral case, while the 
rate of steady decay is about 3.5 as large. 

In the case of overdominance between a pair of alleles A, and A,, the formula 
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FIGURE 2.-The relationship between time for  fixation and selective advantage in the case of 

genic selection (no dominance). The curve represents the theoretical results by numerical inte- 
gration and the dots represent the results of Monte Carlo simulation. In this figure, the effective 
population number Ne=10 and the initial frequency p=O. l .  

(12) contains double integrals. Though no simulation experiments were per- 
formed in this case, we studied, using formula ( 12), the theoretical relationship 
between the time until fixation and the initial frequency for various values of 
N,s assuming that the fitnesses of the three genotypes AIAI, A,A, and A2A2 are 
l-s, 1 and l-s, respectively. In such a case, the equilibrium gene frequency is 
0.5 and the overdominance is most effective for retarding gene fixation (ROBERT- 
SON 1962). Now, the time until fixation is the function of N e  and Nes. So, in 
Figure 3, the results for Nes = -2, -1, 1, 2 and 4 are illustrated in comparison 
with the selectively neutral case (Nes  = 0). From the figure, it may be seen, for 
example, that the overdominance prolongs the time until fixation almost twice 
as compared with the selectively neutral case when N,s is about 2. Let us compare 
the present results with the rate of steady decay. Again, the increase of fixation 
time for larger N,s is slower as compared with the increase of the inverse of the 
rate of steady decay which is equivalent to the retardation factor of ROBERTSON. 
For instance, when Nes = 2, the retardation factor is about 1/0.4 = 2.5 (MILLER 
1962). However, the disagreement is not as large as in the case of the genic 
selection. 

DISCUSSION 

It now appears (KIMURA 1968) that mutation and random genetic drift play 
a more important role in determining the genetic structure of Mendelian popu- 
lations than previously considered, especially when molecular mutations are 
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FIGURE 3.-Time for fixation of an overdominant mutant gene as a function of its initial 

frequency with various intensities of selection. Only the theoretical results obtained by numerical 
integration are shown. No Monte Carlo experiments were performed. The selectively neutral case 
is also shown for comparison. The ordinate gives the time for fixation by the logarithmic scale. 

taken into account. Furthermore, the majority of such mutations appear to be 
almost neutral for natural selection. Thus the results obtained in the previous 
sections assuming M = 0 should be applicable to such mutations. 

NOW, in a population consisting of N individuals, if we assume that each 
mutant gene is represented only once at the moment of its occurrence, p = 1/ 
( 2 N ) ,  and from formula (14), the average number of generations until fixation 
of a neutral mutation becomes 

B P  

9 1 - 
t1 (1) = -8NN, (1 - =) log, (1'- - 

2N 2N 
If N is large, this is very close to 4N,, the value given asyl(0) in (15) .  Since the 
condition (6), i.e.x(O) = finite is a crucial one in deriving the formula (8) and 
therefore formula (12), it may be of some interest to examine the value of z ( 0 )  
more in detail. It was shown by KIMURA (1955) that for a neutral mutation 

-hit 
( 1 - r 2 ) T 1  ( r )e  , eg 2i+l 

%=l 2i (iS.1) i-1 
u ( p , t )  = p + , E  ~ 
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where r=l-2p, &=i(i+l)/(4Ne) and Till (I) represents the Gegenbauer poly- 
nomial. The above formula enables us to calculate t l ( p )  directly from ( 1 )  and 
(2) , giving 

At the limit of p -+ 0 (I. + l ) ,  if we use the relation Ti?1(1)=i(i+1)/2, we 
obtain 

- CO 2i+ 1 
tl (0) =4Ne 2 (--1) i(i+l) = 4Ne Y 

i = l  

thus confirming the result given in (15) .  The above results show that a single 
mutant gene, if it is neutral, takes about 4N, generations until fixation if we dis- 
regard the cases in which it is eventually lost. In this connection, it is interesting 
to note FISHER'S (1930) inference that in the absence of favorable selection the 
number of individuals having a gene derived from a single mutation cannot 
greatly exceed the number of generations since its occurrence. 

Next, let us consider the number of generations until a neutral mutant gene 
is lost from the population disregarding the cases in which it is eventually fixed. 

This is given by formula (16) by putting p=IJ(2N). Namely, 

(23 1 -) 1 =- 4N5 log, (2N) 2(N)log,(2N) Nt? 
' ( 2 N  2N-1 

Since the ratio N,/N is around 0.8 in man (CROW 1954), a single mutant gene 
which appeared in a human population will be lost from the population on the 
average in about 1.6 log,2N generations. If N = lo4, this amounts to about 16 

1 
generations. These results show that a great majority (fraction 1 - --) of neu- 

tral or nearly neutral mutant genes which appeared in a finite population are 
lost from the population within a few generations, while the remaining minority 

(fraction -) spread over the entire population (i.e. reach fixation) taking a 

very large number of generations. 
In  the present paper, we have studied the average (i.e., the first moment) of 

the length of time until fixation (and, separately, until loss), but the present 
method can immediately be adapted to obtain the nth moment of the length of 
time until fixation in terms of (n-1)th moment, thus enabling us to obtain the 
higher moments step by step starting from the first moment. 

2N 

1 
2N 

SUMMARY 

In a finite population, a mutant gene is either fixed in the population or lost 
from it within a finite length of time. A theory was presented which enables us 
to obtain the average number of generations until fixation, and separately, that 
until loss, based on the method of diffusion equations. Also, Monte Carlo experi- 
ments were performed to test some of the theoretical results.-It was shown that 
a single mutant gene, if it is selectively neutral, takes about 4N, generations 
until fixation in a population of effective size Ne.  
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